

Ultrasonic energy meter | Type 775 Ultraschall-Energiezähler | Typ 775

Inspection and Test Instruction Prüf- und Testanweisung

Version: 31.07.2014 / MP

Diehl Metering GmbH Industriestraße 13 91522 Ansbach Telefon +49 981 1806-0 Telefax +49 981 1806-615 info-dmde@diehl.com

Am Weimarer Berg 3 99510 Apolda Telefon +49 3644 84 33-0 Telefax +49 3644 84 33-411 www.diehl.com/metering Sitz der GmbH: Ansbach Registergericht: Ansbach HRB 69 Ust.-IdNr.: DE 131 940 360 Geschäftsführer: Frank Gutzeit (Sprecher) Dr.-Ing. Robert Westphal Thomas Gastner Adam Mechel HypoVereinsbank Ansbach BLZ: 765 200 71 Konto: 5 503 108 SWIFT-BIC: HYVEDEMM406 IBAN: DE31765200710005503108 Seite 1 von 18

CONTENTS

1.	Gen	eral information	.3
2.	Volu	ume test and calibration	.5
2.	.1.	Volume test by Display	.5
2.	.2.	Volume calibration by communication protocol	.5
2.	.3.	Volume test by optical test pulses	.6
2.	.4.	Volume test by test port	.6
2.	.5.	Volume test and calibration by NOWA	.7
3.	Ene	rgy test and calibration	.7
3.	.1.	Manual energy test	.7
3.	.2.	Energy calibration by communication protocol	.8
3.	.3.	Energy test by test port	10
3.	.4.	Energy test and calibration by NOWA	10

INHALT

1. All	gemeines	11
2. Vo	lumentest und Eichung	13
2.1	Volumentest über die Anzeige	13
2.2	Volumeneichung per Kommunikations-Protokoll	13
2.3	Volumentest über optische Prüfpulse	14
2.4	Volumentest über den Test- Port	14
2.5	Volumentest und Eichung über NOWA	15
3. En	ergietest	15
3.1.	Energietest von Hand	15
3.2.	Energieeichung per Kommunikations-Protokoll	16
3.3.	Energietest mit dem Prüfausgang	
3.4.	Energietest und Eichung über NOWA	

1. General information

The following tests and adjustments are possible:

- Volume
- Energy

The start/stop calibration can be performed manually or by communication. The meter can also be calibrated on a NOWA test rig. If ZVEI is selected as the communication method, a wake-up sequence is necessary as per EN 1434 (2.2 s 010101... Sequence at 2400 bauds).

The meters can be evacuated to remove air. The evacuation time must not exceed 2 minutes.

Both temperature sensors must be continuously connected to the meter during the volume test. The temperature sensor which belongs to the flow- sensor (e.g. for return meter the return sensor) must have the water temperature at flow calibration.

Note: A wrong water- temperature influences the flow calibration!

The displays for volume test and energy test are high-resolution displays, i.e. a factor of 1000 times better than "normal" display resolution. The decimal point and unit are displayed correctly in both modes.

Storage mode:

The storage mode is activated if the meter is without water for a day. The meter must be filled with water for min. 1 minute to leave storage mode.

Test volume:

The following test volumes and times must be observed:

Flying start/stop:	$\begin{array}{l} q \leq 0.02 \ x \ q_p \\ q > 0.02 \ x \ q_p \end{array}$	180 seconds 60 seconds
Standing start/stop:	$\begin{array}{l} q \leq 0.02 \; x \; q_p \\ q > 0.02 \; x \; q_p \end{array}$	360 seconds 120 seconds

Test Ccondition:

It is necessary to an adequate rinsing of the test bench in front of the volume test. Effective rinsing is done with nominal flow rate for at least 60s.

A multiple opening / closing the valves support the vent system.

For installation of multiple meters at the test bench is a distance of 5 DN between the meters is recommended.

The inner diameter of the pipes and adapters between the meters at the test bench shall be 15mm for DN15 meter, 20mm for DN20, and so on.

Calibration mode:

First you have to open the calculator and the cover of the test bridge (next to the temperature terminal with marking TEST) has to be removed. This invalidates the previous calibration. The contacts of the calibration bridge, which are located in the top left corner below the protective cover, must be briefly short-circuited (using tweezers, pointed pliers or similar). \rightarrow The meter is now in the calibration mode (° sign in display).

On completion of calibration, terminate the calibration mode by short-circuiting the calibration bridge again

(<u>no</u> ^o sign in display). The integrator returns to normal mode automatically after the 3rd date change.

2. Volume test and calibration

2.1. Volume test by Display

Testing the meter by "high-resolution" volume display. For this high- resolution it is necessary to set the meter in the calibration mode (as described above).

Normal mode e.g.:

Calibration mode e.g.:

2.2. Volume calibration by communication protocol

The "current" volume (max. 10 ms old) can be requested over all available communication channels.

Example protocol:

- 1a. Set high measurement rate 8Hz for 1h 68 0F 0F 68 53 FE 51 2F 0F B0 01 00 02 01 00 08 07 34 00 D7 16
- 1b. Set high measurement rate 64Hz for 1h (only in PLEV 0) 68 0F 0F 68 53 FE 51 2F 0F B0 01 00 02 01 00 08 C7 34 00 97 16
- 2. Change answer once to volume test 68 04 04 68 53 FE 50 90 31 16
- 3. Acknowledgement E5
- 4. Request data 10 7B FE 79 16
- 5. Answer

68 3B 3B 68 08 32 72 50 46 58 42 A5 11 41 0C A9 00 00 00 0F 07 35 02 59 02 **90 78 73 88 13 00 00 00** 00 00 00 00 00 00 00 **85 4C 00** 14 5C 12 01 0F 2C 10 0C 55 11 72 10 05 C9 10 **02 01 00 02** BC 16

# Byte	Answer Data	Description
20, 21	0F 07	Volume Information following
26- 33	90 78 73 88 13 00 00	8 Byte coarse volume BCD L Byte first:
	00	= 1388737890
42-44	85 4C 00	3 Byte fine volume binary L Byte first:
		4c85 = 19589
59	02	COMMA : * 10^-02
60-61	01 00	Unit m ³
62	02	UNITVOLV : $m^3 * 10^{(8-02)} = m^3 * 10^{-6}$

Volume calculation

Volume [Liter] = (Coarse Volume + (fine volume/ 256) * 10^(**UNITVOLV** + **COMMA**)) *10^(-5- **UNITVOLV**)

Volume = (1377737890 + (19589/256)*10^(4))*10^(-7) = (1377737890 + 765195) * 10^-7 = 137,85030 Liter

2.3. Volume test by optical test pulses

For this optical test pulses it is necessary to set the meter in calibration mode. After setting the meter in calibration mode the meter sends optical pulse by IR port. Pulse rates see in table below.

- After pushing the button, "Out 4" appears in the display alternating with the pulse value, for example 0.000003 m³. Independent in which display loop the meter is, or if it is in the power-save mode, the meter will activate optical test.
- The SHARKY now will send the test pulses for 3 hours, according to the pulse value which is shown in the display. The value depends on the nominal size of the meter table below.
- At this time the display change into the standard display (cumulated energy), if the button will not be pressed within 4 minutes. Anyhow the optical pulses will be sending.
- The display with "Out 4" alternating with the impulse value will also be shown in the display in loop 3, after the information of the pulse outputs.
- After 3 hours the meter will fall back automatically into normal mode and the output of the optical test pulses will stop.

Note: Any communication by the optical port switch off the test mode

2.4. Volume test by test port

The meter has an own test port. For this test it is not necessary to set the meter in the calibration mode. For this test is a special "volume- test- cable" available (code no. 3024794) The wires are defined as:

Pulse output:	White
GND:	brown
	Green (not connected)

Note: The meter needs ~1*min to activate the adapted cable* <u>Puls output:</u>

Open Drain; f _{max}. \leq 800 Hz U _{max}. \leq 60 V I _{max}. \leq 20 mA

Volume test:

- a. the pulses are time continuant
- b. pulse/ pause 1:1
- c. maximal pulse-time are programmable

Test pulse rate:

q _p	Pulse rates	
0,6	1ml	167Hz @qp
1	1ml	278Hz @qp
1,5	2ml	208Hz @qp
2,5	3ml	231Hz @qp
3,5	4ml	243Hz @qp
6	6ml	278Hz @qp
10	10ml	278Hz @qp
15	20ml	208Hz @qp
25	30ml	231Hz @qp
40	40ml	278Hz @qp
60	60ml	278Hz @qp
100	60ml	463Hz@qp

2.5. Volume test and calibration by NOWA

The meter test and calibration over NOWA is available.

3. Energy test and calibration

3.1. Manual energy test

For the energy test it is <u>not</u> necessary to set the meter into calibration mode.

a) Setting into energy test via the button on the meter

- 1. Heat up temperature sensor or connect measuring shunt.
- Change to the power display (with button; <u>do not</u> keep button pressed).
 123.456 _{kW}
- 3. Press button for approx. 10 s until "Et1" display appears (ignore the loop change!).

Et 1

4. Test started (duration approx. 2 minutes; initial value "0 kWh*" and "0m²"; a volume of 1000x of the pulse value (table below) is simulated at this time; display changes between energy, volume and "Et1").

	$\begin{array}{c} \text{volume and Et1} \text{.} \\ \text{* possible energy units: kWh, MWh / MJ } \\ \hline 0.000_{kWh} & 5s & 0.000^{\text{m}} \\ \hline \end{array}$	/ <i>MBtu / Gca</i> ^{n³} 2s →	Et 1	Et 1 \Rightarrow calibration in progress (high- resolution energy display)	
5.	Test ended when "Et2" display appears 24.345 kWh $5s$ 1.000	n ³ 2s	Et 2	Et 2 \Rightarrow calibration ended (high- resolution energy display)	
6.	Read meter (= actual value of energy) 24.345 kWh $5s$ 1.000	^{n³} <u>2s</u>	Et 2	Et 2 \Rightarrow calibration ended (high- resolution energy display)	
7.	Calculate set value ($Q_{set} = V * \Delta t * k$); sin 24.345 kWh $5s$ 1.000 m	$\frac{1}{2}$	me = 1000 litres	Et 2 \Rightarrow calibration ended (high- resolution energy display)	
8.	Calculate the reading deviation $ \begin{array}{c} 24.345_{kWh} \\ 5 \\ \hline \end{array} $	^{n³} <u>2s</u>	Et 2	Et 2 \Rightarrow calibration ended (high- resolution energy display)	
9.	End calibration by pressing button once 123.456 kWh	Energy con	sumption (basic displ	ay)	
3.2. Energy calibration by communication protocol					

Energy calibration can also be initiated by communication means. **Example protocol:**

1. Start Volumen Simulation	68 10 10 68 53 FE 51 2F 0F A0 01 00 02 01 00 7D
1000 Volumen proceedings (1Hz)	08 95 00 00 9E 16
Option fast	68 10 10 68 53 FE 51 2F 0F A0 01 00 02 01 00 7D
	08 D5 00 00 DE 16
2. Receipt	E5
3. Request data	10 7B FE 79 16
4. Answer	68 39 39 68 08 00 72 19 00 20 00 24 23 20 04 EA
	28 00 00 0A 5A 34 04 0A 5E 03 04 0A 62 30 00 OF

08 77 08 **92 27 53 34 00 00 0D** 00 10 60 85 65 36

10 00 00 00 00 00 08 00 00 00 **03 06** 13 7E 16

# Byte	Answer Data	Description
32,33	0F 08	Energy Test Results follow
36-41	92 27 53 34 00 00	6 Byte Energy BCD L Byte first:
		=34532792
42	0D	0D = Test completed
58	03	UNITVOLE ¹⁾
59 (evtl	06	1 – 3 Byte MBus VIF Energy ²⁾
+60,61)		

Tablle 1)

UNITVOLE	volume resolution for energy calculation	Resolution of communicated energy
3	11	0,1 mWh / J / cal or Btu*10 ⁻⁴
2	10	1 mWh / J / cal or Btu $*10^{-3}$
1	100	10 mWh / J / cal or Btu*10 ⁻²
0	1000	100 mWh / J / cal or Btu*10 ⁻¹

Table 2)

VIF	Energy Unit
05	Wh
06	Wh
06	Wh
07	Wh
FB 00	Wh
FB 01	Wh
0E	ĸJ
0F	Ŋ
FB 08	kJ
FB 09	kJ
FB 0D	kcal
FB 0E	kcal
FB 0F	kcal
FB 8F 77	kcal
83 3D	Btu
84 3D	Btu
85 3D	Btu
86 3D	Btu

Procedure:

Multiply volume proceedings (1000) and volume unit following the table¹⁾. Example: $1000 \times 1Liter$

Multiply energy value from answer telegram and unit (from table²⁾) with Resolution (of table¹⁾). Example: (UNITVOLE = 3; VIF = 06) 34532792 * 0.1 mWh = 3453,2792 Wh

3.3. Energy test by test port

The meter has an own test port. For this test it is not necessary to set the meter in the calibration mode.

For this test is a special "energy- test- cable" available (code. no. 3024799) The wires are defined as:

Pulse output:	White
Volume pulse input:	Green
GND:	Brown

Note: The meter needs ~1min to activate the adapted cable

- a. Input: Volume pulses has to be time continuously $f_{max} \le 100 \text{ Hz}$ Passive Pulse: $R_{max} \le 10 \text{ k}\Omega$ (internal Pull-UP U_{high} = 3 V)
- b. Output:

Energy pulses as burst Pulse duration has a dynamic adaption on the frequency $f_{max} \le 800 \text{ Hz}$ $U_{max} \le 60 \text{ V}$ $I_{max} \le 20 \text{ mA}$

Pulse rates:

sizes qp	Pulse value	Pulse value
	volume input	energy output
≤6	11	10 Wh / kJ / Btu / kcal
>6	10	100 Wh / kJ / Btu / kcal
>60	100	1000 Wh / kJ / Btu / kcal
>600	1000 I	10000 Wh / kJ / Btu / kcal

3.4. Energy test and calibration by NOWA

The meter test and calibration over NOWA is available

1. Allgemeines

Es sind folgende Prüfungen/Tests möglich:

- Volumen
- Energie

Die Start- Stopp- Prüfung kann von Hand oder per Kommunikation erfolgen. Außerdem besteht die Möglichkeit, das Gerät auf einem NOWA- Prüfstand zu eichen. Wird als Kommunikationsart ZVEI gewählt, ist eine Aufwecksequenz nach EN 1434 erforderlich (2,2s - 010101... Sequenz mit 2400 Baud).

Eine Evakuierung der Zähler zur Entlüftung ist möglich. Die Evakuierungszeit darf 2 Minuten nicht überschreiten.

Beide Temperatursensoren müssen am Zähler angeschlossen und während der Prüfung ununterbrochen kontaktiert sein.

Der Temperatursensor, welcher dem Volumensensor zugeordnet ist (z.B. Rücklaufsensor bei Zählerinstallation im Rücklauf), muss bei der Volumeneichung die Prüfstands- Wassertemperatur haben.

Achtung: Eine falsche Wassertemperatur beeinflusst die Durchfluss Kalibrierung.

Die Anzeigen der Volumentests bzw. der Energietests sind hochauflösend, d.h. sie entsprechen einem Faktor von 1000 zur "normalen" Anzeigeauflösung. Kommastelle und Einheit werden in beiden Modi korrekt angezeigt.

Lagermodus:

Ist der Zähler einen Tag ohne Wasser, wird der Lagermodus aktiviert. Um diesen zu verlassen, muss der Zähler min. 1 Minute befüllt sein.

Prüfvolumen:

Es sind folgende Prüfvolumina und -zeiten zu beachten:

Fliegender Start- Stop:	$q \le 0,02 \ x \ q_p$ $q > 0,02 \ x \ q_p$	180 Sekunden 60 Sekunden
Stehender Start- Stop:	$\begin{array}{l} q \leq 0,02 \; x \; q_p \\ q > 0,02 \; x \; q_p \end{array}$	360 Sekunden 120 Sekunden

Voraussetzung:

Vor der Volumenprüfung ist ein ausreichendes Spülen des Prüfsystems bzw. der Prüfkette notwendig. Ein effektives Spülen der zu prüfenden Zähler erfolgt mit Nenndurchfluss qp für mindestens 60s. Ein mehrmaligem Öffnen/Schließen der Stellventile unterstützt die Entlüftung des Systems.

Bei Reihenprüfungen von mehreren Zählern in einer Kette ist einen Abstand von 5 DN zwischen den Prüflingen empfehlenswert. Der Innendurchmesser der Rohrleitung und Zwischenadapter müssen dem Zähler angepasst sein (15mm für DN15 Zähler, 20mm für DN20 Zähler usw.).

Eichmodus:

Zuerst muss das Rechenwerk geöffnet und die Abdeckung der Testbrücke (Markierung TEST neben den Temperaturklemmen) herausgebrochen werden. Damit erlischt die bisherige Eichung. Die Kontakte der Eichbrücke, müssen kurz überbrückt werden (Pinzette, Spitzzange oder ähnliches). \rightarrow Der Zähler ist jetzt im Eichungsmodus (Symbol "o" im Display).

Nach erfolgter Eichung ist der Eichmodus durch ein weiteres Überbrücken der Eichbrücke zu beenden (<u>kein</u> "°" Symbol im Display). Das Rechenwerk fällt am 3. Tageswechsel selbständig in den Normalmodus zurück.

2. Volumentest und Eichung

2.1 Volumentest über die Anzeige

Prüfung des Zählers über die hochauflösende Volumenanzeige. Für diesen Mode muss der Zähler in den Eichmodus gesetzt werden.

Nο	rmal	Mode	7 R ·
UVI	mai	PIUUE	2.D

Test Mode z.B.:

123 _{kWh}	1.234	m ³
123.45 ⁶ kWh	1.234567	m³

2.2 Volumeneichung per Kommunikations-Protokoll

Über alle verfügbaren Kommunikationskanäle kann das "zeitrichtige" Volumen (max. 10ms alt) abgefragt werden

Beispielprotokoll:

1a. Wähle hohe Messrate 8Hz für 1h

68 0F 0F 68 53 FE 51 2F 0F B0 01 00 02 01 00 08
07 34 00 D7 16

1b. Wähle hohe Messrate 64Hz für 1h (nur in PLEV 0)

68 0F 0F 68 53 FE 51 2F 0F B0 01 00 02 01 00 08
C7 34 00 97 16

2. Ändere Antwort einmalig auf Volumentest 68 04 04 68 53 FE 50 90 31 16

- 3. Bestätigung E5
- 4. Daten anfragen 10 7B FE 79 16
- 5. Antwort

 68 3B
 3B 68
 08 32
 72 50
 46 58
 42 A5
 11 41
 0C A9

 00 00
 00 0F
 07 35
 02 59
 02 90
 78 73
 88 13
 00 00

 00 00
 00 00
 00 00
 00 00
 00 85
 4C 00
 14 5C
 12 01

 0F 2C
 10 0C
 55 11
 72 10
 05 C9
 10 02
 01 00
 02 BC

 16

# Byte	Antwort Daten	Beschreibung
20, 21	0F 07	Volumen Information folgend
26-33	90 78 73 88 13 00 00	8 Byte grobe Volumen BCD L Byte first:
	00	= 1388737890
42-44	85 4C 00	3 Byte feine Volumen binär L Byte first:
		4c85 = 19589
59	02	COMMA : * 10^-02
60-61	01 00	Einheit m ³
62	02	UNITVOLV : m ³ * 10 ⁽⁸⁻⁰²⁾ = m ³ * 10 ⁻⁶

Volumenberechnung Volumen [Liter] = (Grob-Volumen + (Fein-Volumen/ 256) * 10^(**UNITVOLV** + **COMMA**)) *10^(-5- **UNITVOLV**)

Volumen = (1377737890 + (19589/256)*10^(4))*10^(-7) = (1377737890 + 765195) * 10^-7 = 137,85030 Liter

2.3 Volumentest über optische Prüfpulse

Für die optischen Prüfpulse ist es erforderlich den Zähler in den Prüfmode zu setzen. Im Prüfmode sendet die Zähler dann optische Prüfpulse über die IR Schnittstelle. Die Nenngrößen anhängigen Pulswertigkeiten sind die Tabelle unten zu entnehmen.

- Nach der Tastenbetätigung erscheint im Display die Anzeige "Out4" im Wechsel mit der Impulswertigkeit z. B. 0.000004 m³ . Unabhängig davon in welcher Anzeigeschleife der Zähler ist, oder ob er im Stromsparmodus ist, aktiviert der Zähler die optische Prüfimpulsausgabe und es erscheint immer die gleiche Displayanzeige.
- Der SHARKY gibt nun für 3 Stunden die im Display angezeigte Prüfimpulswertigkeit aus. Die Wertigkeit ist abhängig von der Nenngröße des Zählers.
- In dieser Zeit kann die Anzeige in die Grundanzeige (kumulierte Energie) wechseln, wenn innerhalb von 4 Minuten die Taste nicht betätigt wird. Dennoch werden die optischen Prüfimpulse weiter ausgegeben.
- Die Anzeige mit "Out4" im Wechsel mit der Impulswertigkeit wird auch noch in der Schleife 3 nach den Informationen der Impulsausgänge angezeigt, solange die Prüfimpulse ausgegeben werden.
- Nach 3 Stunden fällt der Zähler automatisch in den Normalmodus, und die optische Prüfimpulsausgabe ist damit beendet.

Note: Jede Kommunikation über die optische Schnittstelle deaktiviert den Testmode.

2.4 Volumentest über den Test- Port

Der Zähler verfügt über einen eigenen Test- Port. Für diesen Test ist es nicht notwendig, den Zähler in den Prüfmode zu setzen. Ein spezielles Prüfkabel ist für diesen Test verfügbar (Bestellnummer 3024794) Die Kabeladern sind definiert wie folgt:

Puls Ausgang:	Weiß	
GND:	Braun	
	Grün	(nicht verwendet)

Note: Der Zähler benötigt ~1min das Kabel zu erkennen und den Mode zu aktivieren. <u>Pulsausgang:</u>

Open Drain; f $_{max}$ \leq 800 Hz U $_{max}$ \leq 60 V

I $_{max}$. \leq 20 mA

Volumen Test:

- die Pulse erfolgen zeitrichtig
- Puls/ Pausen Verhältnis 1:1
- die maximale Pulsdauer ist programmierbar

Pulswertigkeiten:

q _₽	Pulswertigkeiten		
0,6	1 ml	167Hz @qp	
1	1 ml	278Hz @qp	
1,5	2 ml	208Hz @qp	
2,5	3 ml	231Hz @qp	
3,5	4 ml	243Hz @qp	
6	6 ml	278Hz @qp	
10	10 ml	278Hz @qp	
15	20 ml	208Hz @qp	
25	30 ml	231Hz @qp	
40	40 ml	278Hz @qp	
60	60 ml	278Hz @qp	
100	60 ml	463Hz@qp	

2.5 Volumentest und Eichung über NOWA

Die Volumenprüfung und Eichung über NOWA ist verfügbar.

3. Energietest

3.1. Energietest von Hand

Für den Energietest ist es <u>nicht</u> notwendig, den Zähler in den Eichmodus zu setzen.

a) Setzen in den Energietest direkt über die Taste am Zähler

- 1. Temperaturfühler temperieren oder Messwiderstand kontaktieren
- 2. Wechsel in die Leistungsanzeige (mit Taste; Taste <u>nicht</u> gedrückt halten)

 $123,456_{kW}$

3. Taste ca. 10 sek. lang drücken bis Anzeige "Et1" erscheint (durch den Schleifenwechsel nicht irritieren lassen!)

4. Prüfung gestartet; Dauer ca. 2 Minuten; Anfangswert "0 kWh*" und "0m³". In dieser Zeit wird ein Volumen von 1000x der entsprechenden Volumen- Pulswertigkeit (Tabelle unten) simuliert.

Anzeige wechselt zwischen Energie und "Et1").

* mögliche Energieeinheiten sind: kWh, MWh / MJ / MBtu / Gcal				
0.000 kWh	0.000 ^{m³}	2s	Et 1	Et 1 \Rightarrow Eichung läuft (hochauflösende Energieanzeige)
5. Prüfung beendet.	wenn Anzeige "Et2" ers	scheint		
24,345 _{kWh}	5s 1.000 ^m	2 <u>s</u>	Et 2	Et 2 \Rightarrow Eichung beendet (hochauflösende Energieanzeige)
6. Zählerstand ablese	en (= Istwert der Ener	gie)		
24,345 _{kWh} 5	1.000 ^{m³}] <u>2s</u>	Et 2	$ \begin{bmatrix} \text{Et } 2 \Rightarrow \text{Eichung beendet} \\ (\text{hochauflösende} \\ \text{Energieanzeige}) \end{bmatrix} $
7. Sollwert berechner 24,345 _{kWh} 5	$f(Q_{soll} = V * \Delta t * k); s$	imuliertes	Volumen = 1000 l Et 2	Liter Et 2 \Rightarrow Eichung beendet (hochauflösende Energieanzeige)
8. Berechnung der M	esswertabweichung du	rchführen		
24,345 _{kWh} 5	5S 1.000 ^{m³}	2s	Et 2	Et 2 \Rightarrow Eichung beendet (hochauflösende Energieanzeige)
9. Beendigung der Eichung durch 1-maligen Tastendruck				
123,456 _{kWh}		Energieverbi	rauch (Grundanzeige	

3.2. Energieeichung per Kommunikations-Protokoll

Die Energieeichung lässt sich auch durch Kommunikation auslösen.

Beispielprotokoll:

1. Start Volumensimulation 1000 Volumenfortschritte (1Hz)	68 10 10 68 53 FE 51 2F 0F A0 01 00 02 01 00 7D 08 95 00 00 9E 16
Option fast	68 10 10 68 53 FE 51 2F 0F A0 01 00 02 01 00 7D 08 D5 00 00 DE 16
2. Quittung	E5
3. Anforderung der Antwort	10 7B FE 79 16
4. Antwort	68 39 39 68 08 00 72 19 00 20 00 24 23 20 04 EA

28 00 00 0A 5A 34 04 0A 5E 03 04 0A 62 30 00 OF 08 77 08 92 27 53 34 00 00 0D 00 10 60 85 65 36
10 00 00 00 00 00 08 00 00 00 03 06 13 7E 16

# Byte	Antwort Daten	Beschreibung	
32,33	OF 08	Energietestergebnisse folgen	
36-41	92 27 53 34 00 00	6 Byte Energie BCD L Byte first:	
		=34532792	
42	0D	0D = Test abgeschlossen	
58	03	UNITVOLE ¹⁾	
59 (evtl	06	1 – 3 Byte MBus VIF Energie ²⁾	
+60.61)			

Tabelle 1)

UNITVOLE	Volumenauflösung	Auflösung der kommunizierten Energie
	der	
	Energieberechnung	
3	11	0,1 mWh / J / cal or Btu*10 ⁻⁴
2	10	1 mWh / J / cal or Btu $*10^{-3}$
1	100	10 mWh / J / cal or Btu*10 ⁻²
0	1000	100 mWh / J / cal or Btu $*10^{-1}$

Tabelle 2)

VIF	Energieeinheit
05	Wh
06	Wh
06	Wh
07	Wh
FB 00	Wh
FB 01	Wh
0E	kJ
0F	Ŋ
FB 08	kJ
FB 09	kJ
FB 0D	kcal
FB 0E	kcal
FB 0F	kcal
FB 8F 77	kcal
83 3D	Btu
84 3D	Btu
85 3D	Btu
86 3D	Btu

Vorgehen:

Multipliziere Volumenfortschritte (1000) mit Volumeneinheit nach Tabelle¹⁾. Beispiel: 1000 x 1Liter

Multipliziere Energiewert aus Antworttelegramm mit Einheit (aus Tabelle²⁾) und Auflösung (aus Tabelle¹⁾). Beispiel: (UNITVOLE = 3; VIF = 06) 34532792 * 0,1 mWh = 3453,2792 Wh

3.3. Energietest mit dem Prüfausgang

Der Zähler verfügt über einen eigenen Prüfausgang. Für diesen Test wird das spezielle Energieprüfkabel benötigt (Bestellnummer 3024799) Die Kabeladern sind definiert wie folgt:

Puls Ausgang:	Weiß
Volumen Pulseingang:	Grün
GND:	Braun

Achtung: Der Zähler benötigt ~1min das Kabel zu erkennen und den Mode zu aktivieren.

- a. Volumen Pulseingang: Volumenpulse müssen zeitrichtig erfolgen (kontinuierlich) $f_{max} \le 100 \text{ Hz}$ Passive Pulse: $R_{max} \le 10 \text{ k}\Omega$ (intern Pull-UP U_{high} = 3 V)
- b. Energieausgang: Energiepulse als Burst Pulsweite hat eine dynamische Anpassung (Verkleinerung) bei zunehmender Frequenz $f_{max} \le 800$ Hz $U_{max} \le 60$ V $I_{max} \le 20$ mA

Pulswertigkeiten:

sizes qp	Pulswertigkeit	Pulswertigkeit
	Volumenpulse	Energiepulse
≤6	11	10 Wh / kJ / Btu / kcal
>6	10 I	100 Wh / kJ / Btu / kcal
>60	100 I	1000 Wh / kJ / Btu / kcal
>600	1000	10000 Wh / kJ / Btu / kcal

3.4. Energietest und Eichung über NOWA

Die Energieprüfung und Eichung über NOWA ist verfügbar.